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THE FIGURED 12 SUBCASES OF THE COEFFICIENTS INTERRELATIONSHIPS IN
THE KERNEL OF A CONTINUOUS STRICTLY CONVEX ANTAGONISTIC GAME
WITH THE CORRESPONDING EIGHT TYPES OF THE SOLUTION

There have been investigated 12 subcases of some coefficients and some their sums signs in the kernel of a
continuous strictly convex antagonistic game. From that the eight game solution types have been determined, that had
been displayed in the conclusion table.

Hccneoosano 12 noocnyuaes 3uaxkoe HeKOmMopwlx KOIDOUUUEHMOE U HeKOMOPbIX UX CYMM 6 si0pe O0OHOU
HenpepuieHOll CMPO20 bINYKION AHMALOHUCMUYECKOU uepsl. M3 9mozo onpedenieno 8oceMb MUNO8 peuleHus uepbl,
KOmopule 0mobpadcetvl 6 umo2060ti madauye.

The issue specification in the paper and the investigation goal designation

Without arguing, that there are many conflicting events and processes are structured, formalized and
investigated with the mathematical gaming and simulation modeling. Antagonistic games give the exclusively relevant
and good fitting mathematical model for making decisions in some competitive activity economical processes, where
the two players are the rivals. Then an actual investigation goal designation in the antagonistic games lies in finding all
the solutions

S =\ r Shss Vo (1

of the convex continuous antagonistic games [1], which kernel S(x, y) as the surface is defined generally on the unit

square
Dg = X xY =[0;1]x[0; 1], )

where x e X =[0;1] and y €Y =[0; 1] are the pure strategies of the first and second players respectively. There in the

formula (1) the denomination ¥, is assigned as the game value. The optimal strategies set of the first player is &,

and the optimal strategies set of the second player is &, . This paper investigation goal designation is to find all the
solutions (1) of the continuous strictly convex antagonistic game with the kernel

S(x, y):ax2+bx+gxy+cy+hy2+k, 3)

which is defined on the unit square D, where a>0, b>0, g<0, ¢<0, kR . As this game is said to be the

°S(x,
strictly convex, then VxeX and V yeY there must be held the condition % >0, whence
y
azS(x, y) . . . . . .
R =2h>0 and the coefficient /2> 0. While solving this game there should be applied the known maximin
Y

method [2, 3 — 8] with the total determining the sets &, and &, [9 — 13].

The total solving of the specified continuous strictly convex antagonistic game

First of all mark, that as a > 0 then the parabola (3) being the function of the only variable x does not have
the global maximum point. Then this parabola on the unit segment X = [O; 1] reaches the maximum either in the point

x=0 or x=1 and, certainly, this maximum depends upon the sign of the statement a+5+ gy. While having a >0,

b>0, <0, c<0 then there a+b+gy>0 if y<—22 Thevatue ~“250 and —22 <1 if a+b+g <0,
g g g
Subcase 1. a>0, b>0, g<0, c<0: ath+g<0. Here —2"2 <1 andas a+b+gy>0 v y<-22
g g
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a+b
8

by — € (O; 1) c Y then the maximum of the surface (3) on the unit segment X of the variable x is

S(l, y)=a+b+gy+cy+hy2+k, ye{O; _a+b}
maxS(x, y)= & )

xeX
S(O, y):cy+hy2+k, ye{—CH_b; 1}.
g

Before finding the local minimum of the parabola S (1, y) on some subsegment of the unit segment ¥ primarily the

global minimum of S(1, y) should be determined. The first derivative of the parabola S(1, y) is

iS(l,y):i(a+b+gy+cy+hyz+k)=g+c+2hy. 5)
dy dy
The first critical point of the parabola S(l, y) is the zero point of the line (5), that is y = yé? = —gz—-;lc, and as the
second derivative of the parabola S (1, y) is
d—zS(l,y):i(g+c+2hy):2h>0, (6)
dy’ dy

then the global minimum of the parabola S (1, y) is y$> = yﬁfn :_gZ_J;lc. Analogously to that there should be

determined the global minimum of the parabola S (0, y) . The first derivative of the parabola S(0, y) is

d d
d_yS(O’ y):d—y(cy+hy2+k)=c+2hy (7

and the first critical point of the parabola S(0, y) is the zero point of the line (7) y= y§?> =—i. The second

derivative of the parabola S (0, y) is the same as the second derivative of the parabola S (1, y) , that is

2

d d
7 S(0.2) = e ) = 2020 ®)
and the global minimum of the parabola S(0, y) is P =30 - —2—Ch.
Further will determine whether yf,i?n - 8rc, 0; _axb or yg?n - _8*¢ z|0; _axb LAs —8¢50
2h g 2h g 2h
then y :—g2——;lce(0; 1] by —gz—;cgl. That is »), =€ ¢ (0;1] by g+c+2h>0 and ) =—E7 <5 by
g+c+2h<0.
Subcase 1.1 a>0, b>0, g<0, c<0; at+h+g<0; g+c+2h<0. As the point y§;i>n=—g2—*;lc>1 then
here is the triple parabolic inequality
s(1, O)>S[1, —“;bj>s(1, 1)>S(l, _gz_J;,Cj:S(l’ Yo )- ©)

min

The point y<0> = —i >0 and as
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2h(a+b)—
_c _a+b :_i+a+b: (a ) cg (10)
2h g 2h g 2hg
then y% =-< > _axb by 2h(a+b)—cg <0. For furtherance also note that

min 2h g

S(l,—“b}s(o,—“b} (11)
g g

Subcase 1.1.1. a>0, b6>0, g<0, c<0; a+b+g<0; g+c+2h<0; 2h(a+b)—cg <0. The difference

O _ . Cpéﬁ}ngéﬁ—gw (12)

ymin_ymin:_z_h_ 2h 2h _E

shows that yfle <y[<]ii>n . So there may be as yfflzl 2—2—6}16(—a+b; 1} by c¢+2h>0 as well as yﬁ] :—é>1 by
g

c+2h<0.
Subcase 1.1.1.1. a>0, b>0, g<0, ¢<0; a+b+g<0; g+c+2h<0; 2h(a+b)—cg<0; c+2h>0.

As the point yfflzl =-L e _a_+b; 1| then
2h g

a+b c (o)
S| o, - >80, —— |=5(0, %), 13
( g} [ %]( o) (13)

and with (11) and the triple parabolic inequality (9) the minimum of the function (4)

minmax S(x, y)=min{ min _S(1, y), Irilflly S(0, y)p=

ye¥ xeX

:min{min{S(l, 0), S[l, —“;bj}, S(o, ym)} :min{min{S(l, 0), S(l, —“;bl}, S(O, _ij}:
:min{S(l, -“;bj, s(o, —ij} =S(O, _zih) =5s(0.5{%)

2 2
=c _i +h _i +k=k_c_=V0pt (14)
2h 2h 4h
is reached in the point y =y, = _ZC_h , that is on the set of the second player optimal strategies
o) p— j— c j—
Q?/opt _Yopl _{_E}_{yopt}’ (15)

which coincides with the second player optimal pure strategies set Y. The set of the first player optimal pure

strategies X

o primarily should be determined by the roots x; and x, of the quadratic equation [2, 13]

Vi =S(%. ) - (16)

Hereon the corresponding equation (16) is
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2 2
Vo =9S O,—i =k—c—=ax2+bx+gx S Y iy iy A L )
’ 2h 4h 2h 2h 2h

2 2
=ax’ +bx+gx(—ij+k—c—=x(ax+b—§j+k—c—=

2h 4h 2h 4h
2hb—cg c? c
=x|lax+——= |[+k——=8|x,— [=5(x, ¥, ) - 17
( 2h j 4h ( Zh] (% Yun) an
From the equation (17) get the equation
(Zhb_gj(”'b_gjo as)
2h 2ah
. cg—2hb . .
where the roots of the equation (16) are x, =0 and x, = T But the initial condition 2h(a +b)—cg <0 means
a

cg—2hb
a

that x, = >1.8Sohere x, € X and x, ¢ X . Thereupon the set

X, ={xt={0}=2 (19)

opt

and the investigated subcase game solution is the set

5 = {{0}, {_2_0}1} k—:—;}. 20)

Subcase 1.1.1.2. a>0, b>0, g<0, ¢<0; a+b+g<0; g+c+2h<0; 2h(a+b)—cg<0; c+2h<0.
(0)

As the point y, /| = —é >1 then here is the triple parabolic inequality

a+b c (0)
S(0,0)>S|0, - S§(0,1)>S80,——|=S5(0, y\/ ). 21
( ’ )> ( s g j> ( 2 )> ( ’ 2]’!) ( 3ym1n) ( )

The inequalities (9) and (21) with (11) drive to that the minimum of the function (4)

minmax S(x, y)=miny min _S(1, y), min _S(0, y);=

yeY xeX vel0; _a+b e 70?%;1
- min{min{S(l, 0), S(l, - “”’j}, min{S(O, - “bj, s(0, 1)} = min{S(l, - “bj, s (o, 1)} -
g g g
:min{S(O, - ‘”bj, s(0, 1)} =S(0, ) =c+h+k=V,, (22)
g
is reached on the set
(gzopt = Yopt = {1} = {yopl} : (23)

The roots of the corresponding equation (16)

V. =S(0, 1):c+h+k:ax2+bx+gx+c+h+k:

opt

:ax(x+b+—gj+c+h+k=S(x, l)zS(x,yopt) (24
a

b
“&  But a+b+g<0 means —(b+g)>a>0 and — *8
a a

b
are x, =0 and x, =— >1. Then x, € X, x, ¢ X and
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there is the set (19), whence the investigated subcase game solution is

& ={{o}, {1}, c+h+k}. (25)

Subcase 1.1.2. a>0, b>0, g<0, ¢<0; a+b+g<0; g+c+2h<0; 2h(a+b)—cg>0. Here the point

(0) __i<_a+b
min Zh\ g

and there is the true double parabolic inequality

S(O, y1<:i>n)=5(0,—%jés(o,—a;bJ<S(0,l). (26)

This inequality with the inequality (9) and equality (11) give that the minimum of the function (4)

minmaxS(x, y):min min S(l, y), min S(O, y) =

ye¥ xeX a+b} a+b }
ye 0; —— ye ;

:min{min{S(l, 0), S[l, —“:’j}, min{S(O, - “:’j, s(0, 1)}}:

+b)’
:min{S(l, —‘”b], S{o,—“bj}:s(l,—“+bj:5[o,—“+b]:h(a 2) ko, @)

4 g g 4

is reached on the set

5%pt :Yopt :{_a;b}:{yopt}' (28)

The roots of the corresponding equation (16)

+b)’ 2
Vopt:S[l,—a+bj:S[0,—a+bj=h(a ) —ca+b+k=ax2+bx+gx[—a—+b]+c[—a+bj+h[—a+bJ +k=

2

g g g g g g g
+bY +bY’
:axz—ax+h(a 2) —ca—+b+k:ax(x—l)+h(a 2) —ca+b+k=5(x,—a+b]=S(x, yopt) (29)
g g g g g
are x;, =0 and x, =1. They are such that x, € X and x, € X, so the set
Xop = 1500 %} ={0, 1) G0)

May P(x,) and P(x,) be the probabilities of the first player selecting its pure strategies x, = X and X, = % Then

opt opt *
the set :{Xop‘, {P(x<l> ), P()c<2> )}} and there are X :{x<l> x<2>}, P(x<1> )+P(x<2>):1. Those probabilities

“opt opt opt opt?> ““opt opt opt

satisfy the double inequality [1, 9]
S(x<1>, Vopt )P(x<l> ) + S(x<2> s Vopt )P(x<2> ) SV S S(Xf,ﬁ ’ y)P(Xf,lgt ) + S(xéiz ’ y)P(Xéi,Z) ’ GD

where y # y ., and P xf,g‘, or x? = ng,?, or P(x<1>)¢ P(xf,g‘) . In the being investigated subcase the probabilities

P(x;)=P(0) and P(x,)=P(1) may be determined from the right inequality (31):

b 2
v, =S(O, —“;b):s{l, —a;bj:h(a; ) —ca;bwgs(o, »)P(0)+S(1, y)P(1) =

:(cy+hy2 +k)P(O)+(a+b+gy+cy+hy2 +k)P(l)=cy+hy2 +(a+b+gy)P(1)+k; (32)
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b)’ b)Y g’y
hﬁgjrl_cgiﬁ_qy_m;:h(a+ )Zg)’_ca+b+gy:
g g g g

2

g g

_larbrg)atb-gy) atbrg :(a+b+gy){h(“+b_2‘gy)_cg}<(a+b+gy)P(1)-

g

While a+b+gy>0 then y<—+2

and step by step —gy <a+b, a+b—gy<2(a+b),

h(a+b—gy)—cg - 2h(a+b)—cg

2 2

g g

a+b g+c

But - <- and here is their difference
4
_g+c [_a+b)_ g+c a+h_ 2h(a+b)-g(g+c)
2h g 2h g 2hg
2h b)—
where (a+ Z)h g(g+e) >0 . This gives that 2h(a+b)—g(g+c)<0 and then goes the corollary
g
2h -
(a+—§7)cg e [0; 1).
g

And then from the statement (33) there is an inequality for the probability P(l) while a+b+gy>0:

g2 >0 g2

£-0

h(a+b—gy)—cg éP(l)elim{M—s; 1}.

a+b

While a+b+gy <0 then y >— and again —gy >a+b, a+b—gy>2(a+b),

h(a+b-gy)—cg 2h(a+b)—cg
2 > 2 ’

g g

whence from the statement (33) there is an inequality for the probability P(l) while a+b+gy <0:

2 2

g >0 g

£-0

h(a+b—gy)—cg >P(1)elim{0; 2h(a+b)—cg +8}.

Therefore the probability P(l) is the intersection of the segments in the formulas (37) and (39):

P(1)e lim{O; %+S}O{M—s; 1}}: {M}.

e>0 g g

e—0

Hence the probability of the first player selecting its pure strategy x, =0 is

2h(a+b)—cg _ g(g+c)-2h(a+b)

2 2 :

g g

P(O)zl—P(l)zl—

Finally in the investigated subcase the set

(33)

(34

(35)

(36)

(37

(38)

(39)

(40)

(41
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opt 2 > 2

g g

) 2 -
Z :{{o, 1},{g(g+c) Math) 2ha+h) cg}} (42)
and the game solution

ryzﬁ{o, 1}’{g(g+c)—2h(a+b) 2h(a+b)—cg}},{_a+b},h(a+b)2 _Ca+b+k}_ @)

g ’ g g g g

Subcase 1.2. a>0, b>0, g<0, ¢<0; a+b+g<0; g+c+2h>0. The point y<1i>n :—gZ—J;lCe(O; 1] and

m

with the difference (35) there are yfi?n = —ng;lc 6[0; - a+bj by 2h(a+b)-g(g+c)>0 and
4

J’S}Bn =_g2J;lC >_a+b by 2h(a+b)-g(g+c)<0.
Subcase 1.2.1. a>0, b>0, g<0, ¢<0; a+b+g<0; g+c+2h>0; 2h(a+b)-g(g+c)>0. As the
point yfi?n —_8rc [0; _a_—kbj then yr<r(1)1>n < yﬁ?n and yfr?zl =< <o ath . As the corollary, here are the inequality

2h g 2h g
s(1, yszn)=s(1, —g—”jd[l, —“”’j (44)
2h g
and the double parabolic inequality

S(o, yﬁl):S(O, —2—"hj<5(0, —“;bjd(o, 1). (45)

They with the equality (11) result in the conclusion, that the minimum of the function (4)

minmax S(x, y)=miny min _S(1, y), min S§(0, y)r=

yeY¥ xeX a+b a+b
ye| 0; —— ye ——1
g

:min{S(l, yf;?n), min{S(o’ _a+bj, S(O, 1)}}:min{S[l, _g2+hc)’ min{S[O, _a+b]’ S(O, 1)}}:
g g
— min S[1,—g+cj,s 0, 2*P :S(l,—ngc]:
2h g 2h
2
2h 2h 2h

2 2 2 2
=a+b+(g+c)(—g2;cj+h(—g+cj RN €500 ML €6 MRS €0 M S AP

2h 2h 4h 4h o

is reached on the set

ot = Yopu = {— g;;c} ={ Ve } - (47)

The corresponding equation (16) is

2 2
+
Vopt=S(1,—g—+cj:a+b—(‘g <) +k:ax2+bx+gx(—g+cj+c[—g+cJ+h[—g+cj +k=
2h 4h

2h 2h 2h
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2bh~ ’
=ax2+x|: g(g+0)}_cg+c+(g+0) +k=S(X,——g+cj=S(X, yopt); (48)
2h 2h 4h 2h
2 2
axz+){2bh—g(g+c)}_cg+c+(g+c) _a_b+(g+c) :axz+){2bh—g(g+c)}+g(g+c)—2h(a+b):
2h 2h 4h 2h 2h
2bh - —2h b -2h b
—of v ex| 208l )| glere)-Mlarh)) oy slewe)-2h(ard)) (49)
2ah 2ah 2ah
L . . . g(g+c)-2h(a+b)
As it is seen from the equation (49), the roots of the corresponding equation (48) are x, = " an
a
-2
x, =1. But for 2h(a+b)—g(g+c)>0 the root x, = g(g+c)2 hh(a+b) <0 and here x, ¢ X, x, € X . Thereupon
a

the set
Xopt = {xz} = {1} = ?’(;pt (50)

and the investigated subcase game solution is the set
- g+c (g + C)z
& =3{1}, 1~ ,a+b- +ki. (51)
2h 4h

Subcase 1.2.2. a>0, b>0, g<0, ¢<0; a+b+g<0; g+c+2h>0; 2h(a+b)-g(g+c)<0. The

point yf;?n :—gz—:lc> _axh , but else there is the need for learning the point yfflzl = —i position. Knowing that
g
g+c+2h>0 and g <0, the associated statement c+2/ >0 gives the condition yﬁ] :—é< 1. Then from the
. (0) c a+b (0) c a+b
difference (10) have that y, ) =——< - by 2h(a+b)—cg>0 and y,) =——>- by 2h(a+b)—cg<0.
2h g 2h g
Subcase 1.2.2.1. a>0, b>0, g<0, ¢<0; a+b+g<0; g+c+2h>0; 2h(a+b)—g(g+c)<0;
2h(a+b)—cg >0. As the point Y = —gz——;lc > 4% D then there is the double parabolic inequality
g
a+b g+c ay
SLO >S 19_ >S 19__ =S 19 min | * 52
0.0)>51- 425 15 51,0 (52

And the point y<°i>

min

—ig _axo position drives to the double parabolic inequality (26). So, in this subcase the
4

minimum of the function (4) is (27), being reached on the set (28). The roots of the corresponding equation (16) are the
roots of the equation (29) and make the set (30). Further have the inequalities (37) and (39) for the probability P(l) by

either a+b+ gy >0 or a+b+ gy <0, where only just the value

2h(a+b)—cg

2

g

e[o;1]=x (53)

in the statement (40) for the probability P(l) . Thus the optimal strategies set of the first player is (42) and the
investigated subcase game solution is the set (43).
Subcase 1.22.2. a>0, b>0, g<0, ¢<0; a+b+g<0; g+c+2h>0; 2h(a+b)-g(g+c)<0;

2h(a +b)—cg < 0. Here the point y[<:1>n = —i > _axb and )’53121 = —i <1. Consequently, this point position is
g
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yﬁf; = —é € (—M; lj , what drives to the inequality (13). The inequality (13) with the double parabolic inequality

g
(52), minding the equality (11), drive to the conclusion, that the minimum of the function (4) is (14) and it is reached on
the set (15). The corresponding equation (16) is the equation (17), which roots are x, =0 and x, = ng_—zhb But the
a

cg—2hb
2a
is true and the investigated subcase game solution is the set (20).
Subcase 2. a>0, >0, g<0, ¢<0; a+b+g>0. Here is absolutely clear that a+b+gy>0 V ye¥.

initial condition 2h(a+b)—cg <0 means that x, = >1.Sohere x, € X and x, ¢ X . Thereupon the set (19)

Therefore the maximum of the surface (3) on the unit segment X of the variable x is

I)ICIEaXXS(x, y) = maX{S(O, y), S(l, y)} = S(l, y) =a+b+gy+cy+hy’ +k. (54)

The minimum of the parabola (54) depends upon whether ») = _gz_;C e[0;1] or i = —‘i—;c ¢[0; 1], that is firstly

upon the sign of the sum g+c. But yet g+c<0 and the point yﬁ?n -_8%¢ >0. Then yf;?n = —gz—;ce (O; 1] by
g+c+2h>0 and ygfn =—g2—7>1 by g+c+2h<0.

Subcase 2.1. a>0, b>0, g<0, c<0; a+b+g>0; g+c+2h>0. As the point y!) =—g2—+hce(o; 1]

then the minimum of the parabola (54)

2
i —mi - )= _8*tc)_ _&+¢ _&*¢ _8*¢ =
minmax § (x, y) = min S (L, y) S(1, vin) S(l, > ) a+b+g[ o j+c( > j+h( > j +k

2 2 2 2
:a+b+(g+c)[—g+cj+h(—g+cj +k=a+b—<g+c) +(g+c) +k=a+b—(g+c) +k=V,

55
2h 2h 2h 45 4h ot (53)

is reached on the set (47). The roots of the corresponding equation (16) are the roots of the equation (48), which has

g(g+c)—2h(a+b)

been simplified to the equation (49). They are x, = and x, =1. But as _axb >1 then here also

2ah g
_ gz‘;lc <_ a;b and from the difference (35) the inequality 2h(a+b)—g(g+c)>0 s true. Thus
g (g + C)z_a}zlh(a +b) <0 and x, ¢ X, x, € X, that gives the set (50), whence the investigated subcase game solution
is (51).

Subcase 2.2. >0, >0, g<0, ¢c<0; a+b+g>0; g+c+2h<0. As the point yf;?n=—g2—:lc>1 then

there is the double parabolic inequality

_g+C . {1y
S(1,0)>S(1,1)>S(1, o j—S(l,ymin). (56)

Thereupon the minimum of the parabola (54)

min max §(x, y) = min S (1, y)=min{S(1,0), S(L1)}=S(L1)=a+b+g+c+h+k=V,, (57)
is reached on the set (23). The roots of the corresponding equation (16)
Ve =S(L1)=a+b+g+c+h+k=ax’+bx+gx+c+h+k=
=a(x-1) x+"”’%j+a+b+g+c+h+k=5(x, 1)=5(%, Yo ) (58)
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a+b+
are x, = 2078 and x, =1. However, as —
a a

investigated subcase game solution is

atb+g <0,then x, € X, x, € X and there is the set (50), whence the

07:{{1},{1},a+b+g+c+h+k}. (59)

Subcase 3. a>0, b>0, g<0, ¢<0; a+b+g=0. In this boundary subcase the maximum of the surface
(3) on the unit segment X of the variable x is

max S(x, y) =

S(L y)=a+b+gy+cy+m’ +k, 0;1],
. {( y)=a+b+gy+cy+hy’ +k, ye[0;1] )

S(O, y)zS(l, y)=cy+hy2+k, ye{l}.

Apparently that the further minimization of the function (60) on the unit segment Y depends whether the point

W :_gZ_J;lce[O; 1] or s :_g2_7$[0; 1], that is firstly upon the sign of the sum g+c . But yet g+c <0 and the
point yf;?n:—g—ﬂ>0, so then yfi?n:—g—ﬂe(o; 1) by g+c+2h>0, yf;?n:—g—w>l by g+c+2h<0, and
2h 2h 2h
0 8¢ | by grct2n=0
ymln 2h yg -
Subcase 3.1. a>0, b>0, g<0, ¢<0; a+b+g=0; g+c+2h>0. The point yﬁ?n :—g—+ce[0; 1) and

so the minimum of the function (60)

min max S (x, y) = min {yrér[l(i);nl]S(l, ). mins (0. y)} =min{$(1, ), (0, D)} =min{s (1, 30, ), (1. 1)f -

yeY xeX

2 2
+
:S<1,yg?n)=S(1,—g;;lc):a+b+g(—g+cj+c(—g+cj+h[—g+cj +k:a+b_(‘g ) +k=V,, (61)

2h 2h 2h 4h

is reached on the set (47). It is seen from (48) and (49) that the roots of the corresponding equation (16) are

g(g+c)—2h(a+b) )
X = S and x, =1. Butwhile a+b+g=0 at g+c+24>0 then
a

g(g+c)-2h(a+b) g(g+c)t2hg g(gtet2h) o (62)
2ah 2ah 2ah

and x, ¢ X, x, € X and there is the set (50), whence the investigated subcase game solution is the set (51).

Subcase 3.2. a>0, >0, g<0, ¢<0; a+b+g=0; g+c+2h=0. The point y<1> = gz—:lczl and so

the minimum of the function (60)
. _ . . . _ . <1> _ . <1> _
min Ii%?(S(x, »)=min {yrer[lé;nl]S(l, ), ?;H}IS(O’ y)} = mm{S(l, ymin), S(0, 1)} = mm{S(l, nw ), S(1, 1)} =

=S(L o) =S )=a+brgrethrhk=crhrk=V,, (63)

is reached on the set (23). The roots of the corresponding equation (16) are

. g(g+c)—2h(a+b) _ g(g+c)+2hg _ g(g+c+2h) o (64)
! 2ah 2ah 2ah

and x, =1. Then here is the set (30) and in the being investigated subcase the probabilities P(x;)=P(0) and
P(x,)=P(1) should be determined from the right inequality (31), where y # y,, =1, thatis V y <1:
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opt

=(ey+hy* +k)P(0)+(a+b+gy+cy+hy* +k)P(1)=cy+hy’ +(a+b+gy) P(1)+k; (65)
cth—cy—hy* =c(1=y)+h(1-y)(1+y)=
=(1=y)[e+n(1+y)]<(a+b+ ) P(1)=(2r-2) P(1)

v, =S(0,1)=S(1,1)=c+h+k<S(0, y)P(0)+S(1, ) P(1) =
cy

g(y—l)P(l). (66)

As g(y—1)>0 V y<1 then thereupon is an inequality for determining the probability P(1) V y<1:

—y)[c+h(1+y)] ——C+h+hygp(1),

= (67)
g(y-1) g
However hy<h, c+h+hy <c+2h and _cththy <_c+2h =1. Thus —w<l V y <1 and inasmuch as
g g g
li(r)nl (_c+h+hyj:_c+2h:1 (68)
;i[»’ ) g g
the probability P(1) is
. c+2h .
P(l)e 113;[— . - 1} = 15133[1—8; 1]={1}. (69)

Finally, the probabilities P(1)=1 and P(0)=1-P(1)=0, so in the investigated boundary subcase there is the set (50)
and the game solution (59), that is

& ={1}, {1}, c+h+k} . (70)

Subcase 3.3. >0, b>0, g<0, ¢<0; a+b+g=0; g+c+2h<0. Here the point y<1.> =_g2_J;lc>l and

min

there is the double parabolic inequality (56), which drives to the minimum of the function (60)

minmax S (x, y) = min{min S(1, y), minS(0, y)} = min{min{S(l, 0), S(1, 1)}, S(1, 1)} =

yeY¥ xeX yel0:1] yell}

=S(L1)=a+b+g+c+h+k=c+h+k=V, (71)

opt ?

that is reached on the set (23). The roots of the corresponding equation (16) are x, =0 and x, =1, so here again are
true the statements (65) — (67). But by the initial condition g+c+2h <0 this subcase includes also the double
inequality

_cth+hy <_c+2h

<1. (72)
g g
But there may be either —C+2h >0 or — c+2h < 0, that is there are else two subcases with ¢+22 >0 and ¢+2h <0
g 8
respectively.
Subcase 3.3.1. a>0, >0, g<0, ¢<0; a+b+g=0; g+c+2h<0; c+2h>0. Here the value
_c+2h > 0 and, subsequently,
g
lim _cth+hy :_c+2h€[0; 1) (73)
A ¢
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and here yet the probability P(1) is

P(l)elim{—ﬁzh—s; 1}:{—”2”;1] (74)
AN g
Finally, the probability
1-P(1)= P(0)< [o; M} (75)
g

2h . .
where gretsh € (O; 1) . Subsequently, the investigated boundary subcase has the set
g

Z, ={{o, 1}, {1-P(1), P(l)}} (76)
with the probability (74) and the game solution

& ={{{o. 1}, {1-P(1), P}, {1}, c+h+ k). (77)

Subcase 3.32. a>0, b>0, g<0, ¢<0; a+b+g=0; g+c+2h<0; c+2h<0. Here the value

_ct2h <0 and, subsequently,
g
lim _cth+hy :_c+2h<0 (78)
ye[0: 1) g g
y—l
and here yet the probability P(1) is
. 2 2
P(l) € hm{—c+ h —g; 1} ﬂ[O; 1] = {_c+ h; l}ﬂ[O; l] = [0; 1] =X. (79)
>0
£—>0 g g
Finally it is apparent, that the probability
1-P(1)=P(0)e[0; 1], (80)

where the statement (79) is true. Subsequently, the investigated boundary subcase possesses the set (76) with the
probability P(1)e[0; 1] in the statement (79), and the game solution is the set (77).

Conclusion

Having investigated the 12 subcases of the coefficients interrelationships in the kernel (3), there have been
determined the corresponding eight types of the continuous antagonistic game solution. They are grouped in the table 1.

Table 1
The solutions of the investigated continuous strictly convex antagonistic game with the kernel

S(x, y):ax2+bx+gxy+cy+hy2+k

The given game kernel attributes

ion & ={Z .4
with >0, b>0, g<0, ¢<0 The game solution & = {7, . Vi, |

a+b+g<0, g+c+2h<0,
2h(a+b)—cg<0, c+2h>=0

| [

czf'_JJm,J_il,k_ ’ |
(770 20]7 4]

~
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The given game kernel attributes

with a>0, b>0, g<0, ¢ <0 The game solution & = {7, .. Vi, |

a+b+g<0, g+c+2h>0,
2h(a+b)—g(g+c)<0,
2h(a+b)—cg<0

a+b+g<0, g+c+2h<0,

2h(a+b)—cg <0, c+2h<0 5:{{0}5{1},C+h+k}

a+b+g<0, g+c+2h<0,

2
2h(a+b)-cg >0 cye{{{o, 1), {1-P(1), P}, {_a+b}, h(a+2b) _Ca+b+k}’
a+b+g<0, g+c+2h>0, g g g
2h(a+b)-g(g+c)<0, P(l):Zh(a+f)_Cg

g

2h(a+b)—cg >0

a+b+g<0, g+c+2h>0,

2h(a+b)—g(g+c)>0 hy/:{{l},{_gz_—;lc}’aer_(g+c)2H{}

a+b+g>0, g+c+2h>0

a+b+g=0, g+c+2h>0

a+b+g>0, g+c+2h<0 07={{1},{1},a+b+g+c+h+k}
a+b+g=0, g+c+2h=0 & ={1}, {1}, c+h+k}

& ={{{o. 1}, {1-P(1), PO}, {1}, e+ h+ K},
a+b+g=0, g+c+2h<0,c+2h>0

P(l)e{—c—kzh;l}
g

5 =140, 14, 11=P(1), P(1){, {1}, c+h+ky,

a+b+g=0, g+c+2h<0, c+2h<0 - {{{ } { () ()}} {} eray }

P(1)[0: 1]
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